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Do strict decision criteria hamper productivity in the 
pharmaceutical industry?
Stig Johan Wiklund

Captario AB, Göteborg, Sweden

ABSTRACT
The discouragingly high rates of attrition in drug development, and in 
particular in Phase 2, warrant a closer look at the decision criteria applied 
for investment in the next phase (Phase 3). We have in this article evaluated 
Stop/Go criteria after Phase 2, based on a model encompassing both Phase 2 
and 3, as well as the eventual outcome on the market. The results indicate 
that the value of a drug project is often maximized if rather liberal decision 
criteria are applied. The routine adherence to standard criteria, e.g. requiring 
significance at 5% level, may lead to an unduly high rate of false negative 
decisions. This might ultimately hamper the productivity of drug develop-
ment and leading to potentially useful drugs not being taken forward to 
benefit the intended patients.
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1. Introduction

It is a well-known fact that a majority of drug candidates will fail, not reaching the market and 
consequently not bring benefit to the intended patients. The highest attrition rate is found in Phase 2 
and the most common reason for project failures is the lack of desired efficacy (DiMasi et al. 2016; Hay 
et al. 2014; Wong et al. 2019). While the highest attrition rates are found in Phase 2, the consequences 
in terms of both costs and number of patients involved can be even larger in Phase 3. De Martini 
(2020) makes the remarkable estimate that over 800 000 patients might be recruited every year to a 
Phase 3 trial that fails.

A great deal of attention has been given to the issue of potential false positive outcomes 
from Phase 2, primarily focusing on the efficacy-based failures. Pereira et al. (2012) gives an 
overview over projects where exceptionally good results have not been replicated in later trials, 
and the problem has also been studied by several other authors, e.g. Ioannidis (2005), Chuang- 
Stein and Kirby (2014). The U.S. Food and Drug Administration, FDA (2017) has presented a 
study of examples where the Phase 3 results did not correspond to what was previously seen in 
Phase 2. Part of the explanation for late phase disappointments is the existence of ‘regression 
to the mean’ effects, which several authors have paid attention to from slightly different 
perspectives (De Martini 2011; Kirby et al. 2012).

De Martini (2020) proposes some alternatives for remedy of the risk of Phase 3 failures. His main 
suggestion is on enlarging the Phase 2 trials to enable Go/NoGo decisions for starting Phase 3 to be 
based on more accurate data. Huang et al. (2019) arrives at a similar conclusion, stating that an 
increase in the sample size in Phase II will result in greater increase in success probability of Phase III 
than increasing the Phase III sample size by an equal amount.
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Investigations as mentioned above have often focused on the disappointments and failures in Phase 
3. In other words, there has been a focus on the problem of false positive decisions in Phase 2. A 
conclusion that is often drawn, at least implicitly, is that very high requirements should be placed on 
the results from Phase 2 and that strict decision criteria should be implemented for a Phase 3 
investment to be made.

While much interest has been paid to the issue of false positives, the occurrence of false negatives 
has not been given the same attention. Just as it is easy to understand that regression to the mean can 
occur on the positive side, it should be obvious that it can also occur on the negative side. Phase 2 trials 
are typically small, leading to a large random component and a large uncertainty in the observed 
results. A consequence is that good drug candidates may have bad luck in Phase 2 and would have 
shown good results in Phase 3. The termination of such projects would correspond to false negative 
decisions. The occurrence and impact of such decisions are more difficult to study, simply because we 
do not know what the next phase outcome would have been.

This background together with the very high attrition rate in Phase 2 warrants a question to be 
raised: does the pharmaceutical industry in fact place too high hurdles for proceeding to later phase 
trials? Does the industry unnecessarily abandon many drug candidates that would have had the 
potential to ultimately benefit patients, should they not have been terminated early?

Miller and Burman (2018) developed a decision theoretical model for studying investment 
decisions and licensing approvals. Their model was built to both account for, and maximize, the 
revenue of both drug development sponsors, as well as the public welfare. Among the conclu-
sions, they argued for the importance that the “consequences of type I and type II errors are 
factored in when determining the relation between type I and type II error rates”. Underlying 
this conclusion are some results indicating that the type I error rate should in many situations be 
much higher than the values normally selected for design and decision-making (i.e. much higher 
than 5%). Chen and Beckman (2009) derive a model to find optimal decision criteria for 
maximizing a benefit cost ratio. Their study has a particular focus on oncology trials, and the 
results indicate that the empirical bar to proceed from PoC trials to Phase 3 development should 
be substantially lower than the effect size, ∆, anticipated in the design phase. The optimal 
decision criteria for ∆ are shown to correspond to a type I error rate (α) that is generally 
higher than what is usually applied in clinical trials. Lindborg et al. (2014) build a model to 
evaluate the expected cost per launch of a new drug. The choice of risks for false positive (cf 
type I error rate, α) and false negative decision (cf type II error rate, β) in Phase 2 are then 
evaluated, to minimize expected cost. The authors conclude that the false positive risk should be 
selected substantially higher than the usual 5%, and the false negative decision risk rather lower 
than commonly applied. Contributions on related topics have also been made by Mudge et al. 
(2012), on the optimal choice of type I error from a frequentist perspective, and more recently 
by Walley and Grieve (2021), dealing with the trade-off between type I and II error rates in the 
context of a Bayesian analysis.

The findings mentioned above indicate that the existence of false negative decisions might be 
a larger problem than has previously been reflected in the literature, and that the current 
practice of strict decision criteria might be counter-productive for the sponsors and for the 
public welfare. It is the purpose of this paper to further investigate this issue. Our approach is 
not to strive for an optimal analytical solution in a model with relatively few parameters, but 
rather to set the issue in a context of a model that should be flexible enough to realistically 
represent the drug development process. As a consequence, we will use simulations to produce 
the numerical results.

The remainder of the article is structured as follows. The next chapter outlines the general model to 
be used for the evaluation, followed by a description of the simulation study conducted to generate the 
results. The outcome of the simulation study is then presented in a Results section and a discussion 
section concludes the article.
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2. A model of the drug development process

2.1. General modelling concept

The main objective of this study is to evaluate the performance of a drug development process for 
different decision criteria. To enable a realistic evaluation, it is important to capture the key aspects of 
a drug project in the model on which the evaluation is based. We will to a large extent follow the 
modelling framework laid out by Wiklund (2019), but also borrow some aspects of the model from 
Miller and Burman (2018). The framework includes the following main parts:

● Cost and duration
● Treatment effect distributions
● Sample size of key clinical trials
● Criteria for stop/go decisions
● Market and sales revenue
● Outcome measures

We will in the following sections present these model components in some more detail. It may be 
noted already at the outset that the model as presented here does reflect standard study designs and the 
traditional separation of Phase 2 and Phase 3. There are obviously many cases in which the situation is 
different. In rare diseases and some oncology indications, early data from single arm trials are 
sometimes sufficient to proceed to Phase 3. Adaptive and flexible designs, often including interim 
analyses, are becoming more common. While it is beyond the scope of this article to tailor the model to 
these special cases, the proposed modeling framework should be applicable to specific situations with 
some appropriate adjustment to model components and numerical parameter values.

2.2. Cost and duration

The cost incurred and the time it takes to complete each phase are key components when modelling 
the drug development process. For each phase, j∈{2, 3}, we define the cost, Cj, and duration, Tj. The 
cost is modelled to be proportional to the number of patients in the key clinical trial(s) of the phase, 
plus a fix cost representing all other activities in this phase, i.e. 

Cj ¼ C0
j þ NjCN

j 

where Nj is the number of patients in key clinical trials, CN
j is the cost per patient and C0

j is the 
additional fix cost of the phase. For the registration phase, we assume a fixed cost, Creg.

The duration of a phase is modelled to be dependent on the time it takes to recruit patients to the key 
trial(s) of the phase. If the recruitment rate is Qj patients per year, the duration of the phase is given by 

Tj ¼ T0
j þ Nj=Qj 

making the duration of a phase proportional to the sample size plus an additive component, T0
j . The 

recruitment and sample size dependent part of the duration would typically be related to the time 
between ‘first patient in’ to ‘last patient in’. The additive component would capture the time for any 
other parts of the study, including (but not limited to) the treatment period and/or follow-up period 
(e.g. the time between ‘last patient in’ to ‘last patient out’). The additive component would also capture 
any additional activities on the critical path of the development program. It could be argued that the 
additive component might on average be longer when a time-to-event endpoint is used for the key 
clinical trial, but that would simply be accounted for by assigning a higher value to T0

j when using the 
model to produce numerical results. For the registration phase, we assume a fixed duration, Treg. The 
parameter values assigned to the cost and duration parameters in the subsequent simulation study are 
summarized in Appendix, Table 1.
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2.3. Treatment effect

The most common reason for the failure of drug projects is a lack of sufficient efficacy. Our model to 
capture this is based on assuming that the drug has a true treatment effect, Ej. In the clinical trials we 
may then estimate the efficacy, Êj. This observed efficacy is representing the underlying true treatment 
efficacy, plus a random error corresponding to the standard error of the efficacy estimate, Êj ¼ Ej þ εj.

The true treatment effect is unknown, and we will model the corresponding uncertainty by 
assigning a stochastic (prior) distribution to Ej. Wiklund and Burman (2021) evaluated different 
choices for the distribution and based on their results we will use the lognormal distribution, 
Ej,logN μj; γj

� �
in our evaluations. Additional evaluations will be made using a two-point 

distribution: 

Ej ¼
E0with probability pj

0 with probability 1 � pj

�

where pj denotes the probability that the project has a positive true treatment effect. The two-point 
distribution is consistent with the approach taken by e.g. Chen and Beckman (2009) and Mudge et al. 
(2012).

We will assume that the observed efficacy is representing the comparison between two treatment 
groups (investigational treatment versus control), and for simplicity let the analyses be approximated 
by the comparison of two group means. The observational error, εj, is then approximated by a normal 
distribution with mean zero and the standard error being σj

ffiffiffiffiffiffiffiffiffi
2=nj

p
, where nj is the number of patients 

in each of the two treatment arms. While this approach is derived from the simple situation of the 
comparison of two group means, as noted by Miller and Burman (2018) this formulation is quite 
general and, due to the central limit theorem, applicable to different types of responses. Hence it may 
be a reasonable approximation to many of the analyses conducted in clinical development, e.g. for 
continuous or time-to-event data.

The parameter values assigned to the treatment effect parameters in the subsequent simulation 
study are summarized in Appendix, Table 3.

2.4. Sample size

The number of patients to be enrolled in the key clinical trials are calculated using standard sample 
size calculation formulae. As in the previous section, we will use the approximation of the comparison 
of two treatment means. With the two-sided significance level, α0j, and the intended power, 1 � βj, the 
sample size is calculated as 

nj ¼ 2
σj

E0

� �2

zα0j=2 þ zβ

� �2 

assuming equal allocation between treatment arms and letting E0 denote the anticipated treatment 
effect. The parameter values that were assigned to parameters for sample size calculations in the 
subsequent simulation study are summarized in Appendix, Table 2.

While we have presented the modeling framework with the approximation of the standard sample 
size formula above, the general approach should be applicable also to other situations, given appro-
priate adjustment. Note that the sample size formula above can be written as 

nj ¼ K
1
Δ

� �2

γ2
α0;β 
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where γα0;β ¼ zα0j=2 þ zβ is the factor given by type I and type II errors, and Δ ¼ E0=σ is the anticipated 
effect size. Standard formulae for sample size calculations, e.g. for time-to-event data, have the same 
form, with Δ being the effect size often given as a log-hazard-ratio. Adapting the presented modeling 
framework to e.g. survival endpoints, could hence be reduced to selecting a value for K appropriate to 
the selected effect size parameter.

2.5. Decision criteria

A project is taken forward to Phase 3 only if it shows sufficient efficacy in a key clinical trial in Phase 
2. The criterion is often based on showing a statistically significance difference between the 
treatment groups. A positive investment decision is then made if the p-value from a previous trial 
is lower than a given threshold, p̂j < αcrit

j , alternatively the criterion could be defined as a test 
statistic, z, exceeding a given threshold, ẑj > zcrit

j . It could be noted at this point that our model 
makes the distinction between the value of α used in the sample size calculation (α0j), and the 
threshold applied for the decision criterion (αcrit

j ), and that we allow for the fact that these two 
parameters could be different.

The critical value for the test statistic is zcrit
j ¼ Φ 1 � αcrit

j =2
� �

, where αcrit
j is the significance level 

applied for the decision. While the significance level required for a successful progression from Phase 3 
to market authorization is typically given by the regulatory authorities, there is more flexibility for a 
sponsor to decide on the requirements for progressing from Phase 2 to Phase 3, i.e. to decide on the 
value of αcrit

2 . Properties of different choices of αcrit
2 are central to the investigations presented in this 

paper.
It is sometimes argued that decision criteria should not be based on statistical significance, but on 

clinical relevance. We may note, however, that under the applied modelling framework there is a direct 
relationship between criteria for significance and criteria for effect size. With the observed value of the 
test statistic being 

ẑj ¼
Êj

SE Êj
� � ¼

Êj

σj
ffiffiffiffiffiffiffiffiffi
2=nj

p

the criterion p̂j < αcrit
j is, for a given sample size, equivalent to Êj > σj

ffiffiffiffiffiffiffiffiffi
2=nj

p
Φ� 1 1 � αcrit

j =2
� �

, or on the 
scale of the normalized effect size 

Δ̂j >
ffiffiffiffiffiffiffiffiffi

2=nj

q

Φ� 1 1 � αcrit
j =2

� �

.
where Δ̂j ¼ Êj=σj. Relevant parts of the Results section will present outcomes for both the case where 
decisions after Phase 2 are based on significance (i.e. p̂2 < αcrit

2 ) and the case where decisions are based 
on the observed effect size (i.e. Δ̂2 > Δcrit

2 ).
We have here chosen to present the modeling framework based on a simple decision criterion that 

declares a NoGo decision if the observed value (test statistic or effect size estimate) falls below (above) 
a given threshold. While this is an often-used approximation, we appreciate that many other sugges-
tions have been made for more elaborate decision criteria, sometimes tailored to specific disease areas. 
Frewer et al. (2016) propose a framework combining confidence intervals and point estimates and 
Gould et al. (2015) take a structured approach in integrating multiple attributes for the decision- 
making. Lennie et al. (2021) specifically address Go/NoGo decisions for rare diseases, and Chen and 
Beckman (2009) discuss optimal decision criteria in the oncology setting.

Our presentation of decision criteria has so far been focused solely on efficacy. While this is the 
most common reason for failure, there are obviously also other causes for the termination of drug 
projects. We will include these in the model by assigning a probability, πj, that the drug project is 
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terminated in Phase j, for other reasons than efficacy. Let Pj,bernoulli πj
� �

be an indicator for projects 
terminated for non-efficacy reasons, the combined criterion for progressing a project to the next phase 
is then given by the variable Sj as 

Sj ¼
1 if ẑj > zcrit

j and Pj ¼ 0
0 otherwise

�

where Pj,bernoulli πj
� �

. An obvious modification applies for the case when the decision is based on 
the observed effect size, Δ̂2. The parameter values assigned to the decision criteria parameters in the 
subsequent simulation study are summarized in Appendix, Table 4.

2.6. Sales revenue and discounting

To get a holistic view of the drug development process, we include a model for the sales revenue 
generated by the drug when (if) eventually launched to the market, which happens at time TL. We 
assume a model in which the revenue, R, then increases during a ramp-up period of length TU, after 
which it stabilizes at a plateau where annual revenue is A. The revenue is assumed to drop to zero when 
key patent expires, TP. 

R ¼
A � t� TL

TU
A
0

8
<

:

TL < t � TL þ TU
TL þ TU < t � T

TP < t 

We further argue that for a sales model to be realistic, it should take into account the fact that a drug 
shown to have a very good treatment effect is likely to generate more revenue than a drug with a 
mediocre effect. We will in this paper use a very simple model to describe the dependency between 
treatment effect and revenue, where the annual peak revenue, A, is assumed to be proportional to the 
observed treatment effect in Phase 3. There is also a sales forecast that predicts the revenue to be A0 if 
the observed treatment effect would equal the effect specified in the target product profile, E0. The 
potential annual peak revenue is then given by 

A ¼ A0
E3

E0 

The parameter values assigned to the sales model in the subsequent simulation study are summarized 
in Appendix, Table 5. We appreciate that the sales model as outlined above (with a ramp-up, followed 
by a constant plateau and a sudden drop after patent expiry), represents a relatively crude approxima-
tion. While this approximation should be a useful model in many situations, it may be noted that 
examples are common where the actual sales of a drug has continued to increase over many years, and 
where sales has been substantial also after the expiry of initial patents. Should it be considered 
relevant to use a more elaborate model to represent such situations, our general modelling framework 
could still be used after slight modifications to the parameters of the model. The constant value of A0 
could be replaced by a function of time, and a non-zero residual sales could be assigned (possibly also 
as a function of time).

To account for the reduced time-value of future cash flows, revenues are discounted using the 
discount rate, λ. With revenue according to the ramp-up model given above, the discounted revenue is 
given by the following integrals. 

RD ¼ ò

TLþTU

TL

A
t � TL

TU
e� λtdt þ ò

TP

TLþTU

Ae� λtdt 

where λ ¼ ln 1þ rð Þ. After some calculus, this leads to the discounted revenue being 
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RD ¼
A

λ2TU
e� λTL � e� λ TLþTUð Þ
n o

�
A
λ

e� λTP 

The costs for each phase, j, are also discounted to their present values as 

CD;j ¼
Cj

λTj
e� λτ1;j � e� λτ2;j
� �

The discounted costs are based on the assumption of a constant annual cost flow of Cj=Tj, and 
obtained by evaluating the integral 

CD;j ¼
Cj

Tj
ò

τ2;j

τ1;j

e� λtdt 

where τ1;j and τ2;j are the start and end, respectively, of Phase j.
The discounted revenue, RD, as defined above gives a value that is conditional on that the drug is 

launched to the market. To get a measure that is adjusted for the substantial risk of project failure, we 
multiply the conditional revenue, RD, by the variables, Sj, representing success over the phases of 
development. 

RR ¼ RDS2S3Sreg 

Similarly, the risk-adjusted cost is obtained by multiplying the cost of each phase with the variables 
that indicate that preceding phases have been successful. 

CR ¼ CD;2 � CD;3S2 � CD;regS2S3 

2.7. Outcome measures

For the evaluation of decision criteria strategies, we will primarily focus on two outcome measures:

● Expected net present value, ENPV
● Expected productivity index, EPI

The expected net present value is defined as the expected revenue minus the expected cost 

ENPV ¼ RR � CR 

Since the revenue is zero for projects that are not reaching the market, the ENPV is negative in these 
cases. The negative size of the ENPV will depend on what phases are completed prior to termination.

The expected productivity index is defined as the expected net present value divided by the 
expected costs 

EPI ¼
RR � CR

CR 

While the ENPV measures the net value of the project, the EPI relates the value of the projects to the 
costs required and is consequently a measure that relates to the return on investment for the project.

JOURNAL OF BIOPHARMACEUTICAL STATISTICS 7



3. Simulation study and model parameters

3.1. Simulation study

A simulation study was conducted, to evaluate the choice of decision criterion after Phase II, αcrit
2 , in a 

wide range of scenarios. For each iteration, i, of the simulation, a random value was drawn from the 
distribution of true treatment effects, Eij. All parameters and properties of the model were then 
calculated as described in the previous section. The revenue, RR,i, and cost, CR,i, obtained for each 
iteration were then averaged to get the expected revenue as RR ¼ m� 1P

i
RR;i and the expected cost as 

CR ¼ m� 1P

i
CR;i, where m is the number of iterations of the simulation. The outcome measures, 

ENPV and EPI, were finally obtained for each scenario.
A base case was defined as a starting point for the simulations. The parameter values used to define 

the base case are summarized in Appendix. The appendix includes comments and, in some cases, 
information on the rationale or source for the chosen value for the input parameters. In the simulation 
study we also evaluated a number of different scenarios, in addition to the base case. The scenarios 
were defined by assigning ranges of values for parameters of the model, as described in the following 
paragraphs.

3.2. Sample size (type II error) in Phase 2

As noted in the Introduction, some authors (e.g. De Martini 2020; Huang et al. 2019) have suggested to 
increase the sample size of Phase 2 to enable more accurate investment decisions for Phase 3. On the 
other hand, initial studies in the current research indicated that a smaller Phase 2 trial could lead to 
higher value of the project. To evaluate these suggestions in the context of our model, we varied the 
Phase 2 sample size over a range from approximately 90 to 220 patients. With other parameters fixed, 
the different sample sizes correspond to different values of the power of the trial. Varying the sample 
size in the given range was obtained by varying the type II error, β2, between 10% and 40%, when 
calculating the sample size.

3.3. Sales revenue

If the market for the developed drug is very large, either due to a large number of patients or due to a 
high price attained for the drug, this might impact the optimal choice of decision strategy. When the 
anticipated revenue is large, it would seem reasonable to avoid false negative decisions as that might 
have severe consequences in terms of lost revenue opportunities. On the contrary, a small anticipated 
market would make it more prudent to avoid false positive decisions after Phase 2 as this might lead to 
costly failures in Phase 3, with little financial gain to balance the risk. Simulations are run for a range of 
the annual peak revenue, A0, between 200 MUSD and 1 000 MUSD, with 1 000 MUSD representing 
the base case. As a comparison, the development cost of Phase 3 is in the base case approximately 260 
MUSD.

3.4. Difference in effect size and/or variability in phase 2

The clinical trials in Phase 3 are typically conducted based on the most clinically relevant 
endpoint and with inclusion/exclusion criteria representing the intended patient population. In 
Phase 2, the sponsor may have the opportunity to select a study design (e.g. by choosing 
endpoints and inclusion/exclusion criteria) so as to increase the likelihood of the study being 
able to provide evidence of efficacy. This could be achieved by reducing the variability on the 
clinically relevant endpoint, or by choosing an alternative (surrogate) endpoint with a 
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beneficial relation between anticipated treatment effect and variability. This implies that Phase 
2 studies are often designed based on the assumption of a higher anticipated effect size, 
Δ2 ¼ E0=σ2. Since sample size formulae are inversely related to the effect size, the higher 
anticipated effect size corresponds to the fact that sample sizes are typically lower in Phase 2 
than in Phase 3. The relative difference in effect size may impact the optimal choice of decision 
criteria. In the simulation study base case it was assumed that anticipated effect size was Δ2 ¼

0:4 in Phase 2 and Δ3 ¼ 0:25 in Phase 3. For the simulations we evaluated a range of Δ2 
between 0.3 and 0.6, and for each value of Δ2, a sample size for Phase 2 was calculated. The 
range of Δ2 corresponds to sample sizes approximately ranging from 70 to 280 patients in 
Phase 2.

4. Results

The results from the simulation study described in the previous section will be presented in graphs for 
the various scenarios. For each scenario, both the expected net present value, ENPV, and the expected 
productivity index, EPI, will be shown. The outcome measures are displayed versus a range of values 
for the decision criteria applied after Phase 2 to make the Phase 3 investment decision. Results are 
presented for both a significance based criterion, αcrit

2 , and for a criterion based on the observed effect 
size, Δcrit

2 . Results are also presented for two alternative assumptions regarding the true treatment effect 
distribution. The treatment effect distributions are a log-normal distribution and a two-point dis-
tribution as presented in the Treatment effect section above. The results are based on 50 000 
simulations for each scenario.

4.1. Base case scenario

Results in Figure 1 show that the EPI attains a maximum for values of αcrit
2 in the range 0.1–0.15, 

whereas there is a reduction in EPI for higher values of the decision criterion. The ENPV is 
increasing for higher values of αcrit

2 , over the evaluated range, and correspondingly increasing for 
lower values of Δcrit

2 . (It may be noted that an effect size of Δ2 ¼ 0:4 is anticipated in the base 
case sample size calculation). Hence the ENPV is maximized by applying very liberal decision 
criteria for the Phase 3 investment decision, an outcome that is consistent across the two 
treatment effect distributions. The results for EPI do however differ between the effect distribu-
tions. With a log-normal distribution, the EPI is maximized for a rather strict decision criterion 
αcrit

2 < 0:05, whereas under the two-point distribution assumption, a rather liberal criterion is 
optimal, αcrit

2 � 0:2.
It could be noted that the optimality of ENPV for very liberal decision criteria would imply that 

more projects are taken forward to Phase 3, and such a strategy would require virtually unlimited 
resources for large Phase 3 portfolios. The results of Figure 1 also show clear differences between the 
properties of the two outcome measures, ENPV and EPI, and similar differences between the 
outcome measures are seen for many of the evaluated scenarios. The interpretation and relation 
between the outcome measures will be further addressed in the Discussion section. While the ENPV 
is a very commonly used measure of project value, we will in this article pay much attention to the 
results of the EPI.

Figure 2 shows the impact of choosing different levels of the type II error rate, β2, applied in the 
Phase 2 study design. The base case scenario corresponds to β2 ¼ 0:2, and it may be noted that the 
different levels of β2 correspond to the following Phase 2 sample sizes: N2 ¼ 216; 156; 118; 92f g. An 
effect size of Δ2 ¼ 0:4 was anticipated for the sample size calculation. Results in Figure 2 are based on a 
log-normal distribution for the treatment effect-
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The results indicate that the highest values on the outcome measures are generally obtained for a 
high value of β2, i.e. for a small Phase 2 sample size. The ENPV will increase by using liberal 
decision criteria, i.e. a high value for αcrit

2 or a low value of Δcrit
2 . The EPI will instead be optimized by 

applying relatively strict criteria. Figure 3 shows the results for the range of type II error rate, β2, 
when the treatment effect follows a two-point distribution. With this distribution, the EPI is 
maximized for more liberal decision criteria than was seen for the log-normal distribution in 
Figure 2. For a study designed with the power assumed in the base case (β2 ¼ 0:2) the EPI is 
maximized for a significance criterion of αcrit

2 � 0:2, . For studies with less power (higher β2) even 
higher values of αcrit

2 are optimal. Also under this distributional assumption, the ENPV is maximized 
for liberal decision criteria.

Figure 4 illustrates the probability of the project being successful through all phases of 
development, here referred to as the Probability of Launch, PoL. As expected, the results show 
that a larger Phase 2 sample size (lower β2) and a liberal decision criterion (higher αcrit

2 or 
lower Δcrit

2 ) implies a higher PoL. When a significance-based criterion is used, a larger Phase 2 
sample size (lower β2) will lead to a higher PoL, whereas the choice of β2 has a marginal 

Figure 1. Project outcome measures as a function of the decision criterion after Phase 2, evaluated for the model base case.  
Outcome measures: Expected Net Present Value (ENPV), Expected Productivity Index (EPI). 
Top: Lognormal effect distribution. Bottom: Two-point effect distribution. 
Left: Significance decision criterion, αcrit

2 . Right: Effect size decision criterion, Δcrit
2
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impact on the PoL when applying a decision criteria based on effect size. As seen from Figure 
2, a high PoL in a scenario does not necessarily imply a correspondingly preferable EPI or 
ENPV.

Results obtained when varying the expected peak revenue of the project would illustrate the 
obvious fact that a reduced sales revenue will lead to lower values for the financial outcome 
measures. To make the results more interpretable, we have chosen in Figure 5 and 6 to present 
the outcome measures as differences from the outcomes obtained at reference values for the 
decision criteria (αcrit

2 ¼ 0:05 and Δcrit
2 ¼ 0:4, respectively). The results show that with the 

treatment effect following a log-normal distribution (Figure 5), the EPI is maximized with strict 
decision criteria (αcrit

2 < 0:05). When the treatment effect has a two-point distribution (Figure 6), 
more liberal decision criteria will optimize EPI (αcrit

2 in the range 0.2–0.25 and Δcrit
2 � 0:2). If the 

expected revenue is high, e.g. in the base case where A0 ¼ 700, the ENPV is generally maximized 

Figure 2. Expected project value as a function of the decision criterion after Phase 2, evaluated for different levels of the type II error 
rate, β2, applied in the Phase 2 study design.  
A log-normal distribution is assumed for the treatment effect. The different levels of β2 correspond to the Phase 2 sample sizes: N2 ¼

216; 156; 118; 92f g

Top: Expected Productivity Index (EPI). Bottom: Expected Net Present Value (ENPV). 
Left: Significance decision criterion, αcrit

2 . Right: Effect size decision criterion, Δcrit
2
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by adopting high values for αcrit
2 , or correspondingly low values for Δcrit

2 . With the revenue being 
sufficiently low (e.g. A0 ¼ 200) the value of the project is only marginally positive, in which case 
the decision criterion for a Phase 3 investment decision should be more strict in order to 
maximize ENPV.

Figures 7 and 8 illustrate the impact if the study design and endpoint available in Phase 2 give 
different degrees of relative variability, corresponding to different values for the anticipated effect size, 
Δ2. The evaluated range of effect size, Δ2 ¼ 0:3; 0:4; 0:5; 0:6f g, correspond to the Phase 2 sample 
size being N2 ¼ 276; 156; 100; 72f g: Obviously, both the EPI and ENPV will be higher for scenarios 
with a higher effect size. In each of the scenarios, the ENPV is maximized by applying a liberal decision 
criterion (high value of αcrit

2 or low value of Δcrit
2 ), whereas the appropriate choice of αcrit

2 to maximize 
EPI will depend on the underlying treatment effect distribution. With a log-normal effect distribution, 
a strict decision criterion maximizes EPI, choosing αcrit

2 < 0:05 and Δcrit
2 � Δ2, i.e. the effect size based 

decision criterion taken to be approximately the effect size anticipated in the planning phase. With a 

Figure 3. Expected project value as a function of the decision criterion after Phase 2, evaluated for different levels of the type II error 
rate, β2, applied in the Phase 2 study design.  
A two-point distribution is assumed for the treatment effect. The different levels of β2 correspond to the Phase 2 sample sizes: N2 ¼

216; 156; 118; 92f g

Top: Expected Productivity Index (EPI). Bottom: Expected Net Present Value (ENPV). 
Left: Significance decision criterion, αcrit

2 . Right: Effect size decision criterion, Δcrit
2
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two-point effect distribution, EPI is maximized by choosing αcrit
2 � 0:2 and Δcrit

2 � Δ2=2, i.e. the effect 
size based decision criterion taken to be approximately half the effect size anticipated in the planning 
phase.

5. Discussion

The net present value is a very commonly used measure whenever financial aspects are brought into 
quantitative support for decision-making in the pharmaceutical industry. The results of this article may 
point towards properties of the NPV that makes this measure less appropriate than generally antici-
pated. Since pharmaceutical development projects often have a very large upside, the NPV tends to be 
positive even when projects are run at high risk. Consequently, NPV for a portfolio may be maximized 
by running as many projects as possible, taking a lot of risks and allocating unlimited resources to the 
development portfolio. This is also reflected in the results of this paper, where liberal decision criteria 
(high αcrit

2 or low Δcrit
2 ) are shown to maximize ENPV in many of the scenarios. In reality, however, the 

available resources are limited, both in terms of the number of projects available for development and in 
terms of financial resources for funding. Additionally, if the number of projects taken forward to late 

Figure 4. Probability of launch, PoL, as a function of the decision criterion after Phase 2, evaluated for different levels of the type II 
error rate, β2, applied in the Phase 2 study design.  
The different levels of β2 correspond to the Phase 2 sample sizes: N2 ¼ 216; 156; 118; 92f g.  
Top: Lognormal effect distribution. Bottom: Two-point effect distribution. 
Left: Significance decision criterion, αcrit

2 . Right: Effect size decision criterion, Δcrit
2
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phase development and to the market would substantially increase, their marginal benefit in terms of 
efficacy and revenue would likely decrease. Hence, the limited resources need to be focused on those 
projects that bring the most benefit within available resource limits. The choice of projects, and the 
design of the projects, should maximize the return on the invested resources and, arguably, measures 
focusing on the return on investment is therefore better suited for evaluation of drug development 
strategies. This is also the reason why the EPI outcome measure has been given a prominent place in the 
results presented in this article. Chen and Beckman (2009) and Chen et al. (2013) used a benefit–cost 
ratio for their evaluations of Go-NoGo criteria. This measure, being a ratio between benefit and costs, is 
also a type of return-on-investment indicator and hence has some resemblance to the EPI measure used 
in this article. While the conclusions from evaluating ENPV consistently indicating liberal decision 
criteria to be favorable, our results give a more complex picture when decision criteria are based on EPI. 
With EPI as the outcome measure, the optimal decision criterion is indicated to be context dependent. 
Aspects like the chosen type II error rate, the related choice of Phase 2 sample size, the anticipated effect 
size and variability of the Phase 2 endpoint, have all been shown to impact the appropriate choice of 
decision criterion for maximizing EPI.

Figure 5. Expected project value as a function of the decision criterion after Phase 2, evaluated for different levels of the peak annual 
sales revenue, A0. The outcome measures are presented as differences from the values obtained at αcrit

2 ¼ 0:05 and Δcrit
2 ¼ 0:4, 

respectively.  
A log-normal distribution is assumed for the treatment effect.  
Top: Expected Productivity Index (EPI). Bottom: Expected Net Present Value (ENPV). 
Left: Significance decision criterion, αcrit

2 . Right: Effect size decision criterion, Δcrit
2

14 S. J. WIKLUND



We have in this article assumed that the decision criteria, for a successful continuation of a project 
to the next phase, is based either on statistical significance (i.e. p̂2 < αcrit

2 ) or based on the observed 
effect size (i.e. Δ̂2 > Δcrit

2 ). We are of course aware that other choices of decision criteria may be 
relevant, and that more elaborate approaches to decision criteria are proposed by some authors, e.g. 
Frewer et al. (2016). Slightly simplified, their approach involves defining a target value, TV, and a 
lower reference value, LRV. A ‘Go’ decision is concluded if the observed efficacy is significantly above 
LRV, and a ‘Stop’ is concluded if a value significantly below TV is observed. The TV of Frewer et al 
may be represented by the anticipated treatment effect in our model, E0. If we let LRV = 0, the 
significance-based criterion corresponds to a special case of the Frewer et al criteria. With the sample 
size and variance assumed in our base case, the decision criterion would be to conclude a ‘Go’ if 
Ê2 > E0=2, with the decision parameter αcrit

2 � 0:2. While being beyond the scope of this article, it 
would be an interesting topic of future research to investigate more generally the impact of the 
decision criteria suggested by Frewer et al, in the context of the development model used in this article.

Figure 6. Expected project value as a function of the decision criterion after Phase 2, evaluated for different levels of the peak annual 
sales revenue, A0. The outcome measures are presented as differences from the values obtained at αcrit

2 ¼ 0:05 and Δcrit
2 ¼ 0:4, 

respectively.  
A two-point distribution is assumed for the treatment effect.  
Top: Expected Productivity Index (EPI). Bottom: Expected Net Present Value (ENPV). 
Left: Significance decision criterion, αcrit

2 . Right: Effect size decision criterion, Δcrit
2
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The development of a new drug is an excessively complex process, and any model used for the 
analysis of such a process will have to involve simplifications. Although the model used in this article 
includes many parameters, there are obviously some aspects where the model might be even more 
elaborate. One such aspect is the relation between the endpoint measured in Phase 2 and 3, 
respectively. The model applied in this article allows for the Phase 2 endpoint to have less variability 
(consequently a larger relative effect size), allowing for smaller sample sizes in Phase 2. However, the 
model assumes that the true effect in Phase 2 is perfectly predictable of the true effect in Phase 3. This 
assumption may be questioned, as the outcome of a Phase 2 endpoint, based on a surrogate and/or 
including restrictive inclusion/exclusion criteria, might provide different results than the eventual 
Phase 3 (and regulatory) endpoint. This non-perfect predictability was in the modelling framework of 
Wiklund (2019) represented by a between-endpoint correlation. We have in this article implicitly 
assumed this correlation to be equal to 1. A more thorough assessment of the choice of early efficacy 
endpoints, and its relation to optimal Go/NoGo criteria for Proof of Concept trials, is provided by 
Chen et al. (2013). These authors also note that the trial level correlation is more pertinent to Phase III 
predictability than patient level correlation.

Figure 7. Expected project value as a function of the decision criterion after Phase 2, evaluated for different levels of the Phase 2 
variability, corresponding to different anticipated effect sizes, Δ2.  
The different levels of Δ2 correspond to the Phase 2 sample sizes: N2 ¼ 276; 156; 100; 72f g. A log-normal distribution is assumed for the 
treatment effect.  
Top: Expected Productivity Index (EPI). Bottom: Expected Net Present Value (ENPV). 
Left: Significance decision criterion, αcrit

2 . Right: Effect size decision criterion, Δcrit
2
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The model for a development project used to obtain the results of this article, includes the 
assumption of a treatment effect distribution. This represents the fact that, at the time of planning 
and designing for a project, the true treatment effect is unknown. The assumption of a distribution for 
the treatment effect resembles the prior distribution in a Bayesian analysis. What distribution to assign 
is of course not at all obvious. We have chosen to assign a log-normal distribution for the treatment 
effect, and a background to this choice is found in Wiklund and Burman (2021). These authors 
extracted studies from the database at www.clinicaltrials.gov, and the underlying effect sizes were 
deduced. As a comparison, we also produced results using a two-point distribution, in which the drug 
is either assumed to be void of efficacy or the efficacy equals what is anticipated in the TPP.

The results of this article are based on simulations of a number of scenarios. An alternative might 
have been to attempt analytical solutions (cf Miller and Burman (2018), Walley and Grieve (2021)). 
However, an analytical approach requires a rather restrictive model with a limited number of 
parameters. We have in this article prioritized to obtain results on the basis of a comprehensive 
model, taking into account various aspects like cost, trial duration, sample sizes, treatment effect 
distribution, decision criteria, sales revenue, patent expiry etc. The many model parameters are 

Figure 8. Expected project value as a function of the decision criterion after Phase 2, evaluated for different levels of the Phase 2 
variability, corresponding to different anticipated effect sizes, Δ2.  
The different levels of Δ2 correspond to the Phase 2 sample sizes: N2 ¼ 276; 156; 100; 72f g. A two-point distribution is assumed for the 
treatment effect.  
Top: Expected Productivity Index (EPI). Bottom: Expected Net Present Value (ENPV). 
Left: Significance decision criterion, αcrit

2 . Right: Effect size decision criterion, Δcrit
2
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presented in the Appendix. Our belief is that the validity of an extensive and dynamic model, requiring 
simulations, may in this context provide more relevant (albeit arguably less generalizable) results than 
analytical results which are necessarily based on less extensive models.

The focus of this article has been to illustrate the impact of choosing different decision criteria for 
late phase investment decisions. Another obvious question might be to investigate how the trial 
leading up to the investment decision should be optimally designed. Indirectly, the design question 
is addressed by evaluating different values of the type II error rate, i.e. corresponding to different 
sample sizes. It is however a deliberate choice to not focus more on the design and sample size issue. 
Over the past decades numerous researchers have published thousands of papers on various aspects of 
clinical trial design. The contribution of this article is instead to shed some light on the less researched 
area of how to act once the study has been run and decisions need to be taken based on the results.

We have focused the results section of this article on the standard scenario of Phase 2 and Phase 3 
development programs. In certain disease areas, e.g. oncology or rare diseases, the situation is often 
different and less rigorous early phase data are required to proceed to a pivotal trial. A single arm 
Phase 2 trial, or even a Phase 1b trial with efficacy readouts, may be sufficient to proceed to Phase 3. 
The approach outlined in the Model section should be useful to evaluate also this situation, with some 
appropriate adjustment made to the applied decision criteria and with other parameter values assigned 
for the simulations and numerical results.

As mentioned in the Introduction, much work has been made to address the problem of false 
positives in Phase 2, and the corresponding risk of costly Phase 3 failures. The proposed remedy for 
this issue has often been to increase sample size and apply more rigor to investment decisions after 
Phase 2 (e.g. De Martini 2020; Huang et al. 2019). As we pointed out initially, less focus has been given 
to the problem of potential false negatives in Phase 2, which might occur if strict decision criteria are 
applied. We may quote Lindborg et al. (2014) in stating that: “The lost revenue (that is, opportunity 
cost) stemming from terminating a drug that is in truth effective is typically much greater than the cost 
of advancing an ineffective molecule into Phase III. Therefore, intuitively it makes sense that the 
optimum false negative rate should be lower than the optimum false positive rate, as false negative 
mistakes are more costly. Although this is common sense, it has not been common practice.” Along 
these lines, the results of this article indicate that the potential risk of false negative decisions might 
have a substantial negative impact on the expected value of development projects, and that applying 
liberal decision criteria often increases the value (as measured by ENPV) and sometimes the return of 
investment (as measured by EPI). The excessively high attrition rates seen in Phase 2, commonly due 
to inadequate observed efficacy, might to some extent be a reflection of a large number of false negative 
outcomes. If this is the case, it would represent an inappropriate hampering of the productivity of the 
pharmaceutical industry. This article does not provide any ultimate answers to these questions, but we 
argue that the results certainly warrant more research in this area.
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Appendix

The parameter values used to define a base case for our model are summarized in Table 1–5. The tables also include 
comments and, in some cases, information on the rationale or source for the chosen value.

Table 1. Cost and duration parameters of the base case model used in the simulation study.

Parameter Notation Value Comment/source

Cost per patient, Phase 2 C2
N 0.05 $M Estimate taken from Moore et al. (2020)

Fix cost, Phase 2 C2
0 50 $M Value calibrated to arrive at total Phase 2 cost (60 $M) as given by DiMasi et al. 

(2016)

Cost per patient, Phase 3 C3
N 0.075 $M

Fix cost, Phase 3 C3
0 200 $M Value calibrated to arrive at total Phase 3 cost (255 $M) as given by DiMasi et al. 

(2016)
Recruitment rate, Phase 2 Q2 15 Number of patients enrolled per month

Additional time, Phase 2 T3
0 2 yrs Value calibrated to arrive at total Phase 2 time (38 months) as given by DiMasi 

et al. (2016)
Recruitment rate, Phase 3 Q3 50 Number of patients enrolled per month

Additional time, Phase 3 T3
0 2 yrs Value calibrated to arrive at total Phase 3 time (45 months) as given by DiMasi 

et al. (2016)

Duration of registration 
phase

Treg 1.6 Estimate taken from Thomas et al. (2016)

Cost of registration phase Creg 10

Table 2. Design and sample size parameters of the base case model used in the simulation study.

Parameter Notation Value Comment/source

Sample size, Phase 2 N2 (160) Approximate number obtained as an average from searching 
clinicaltrials.gov for all industry sponsored, interventional studies in 
Phase 2

Sample size, Phase 3 N3 (700) Approximate number obtained as an average from searching 
clinicaltrials.gov for all industry sponsored, interventional studies in 
Phase 3

Anticipated treatment effect size in 
Phase 2 for sample size calculation

Δ2 0.4 The effect size Δ2 ¼ E0=σ2 is calibrated to give approximately the 
sample size indicated above. With E0 ¼ 10 (given on arbitrary scale), 
the corresponding standard deviation is σ2 ¼ 25.

Anticipated treatment effect size in 
Phase 3 for sample size calculation

Δ3 0.25 The effect size Δ3 ¼ E0=σ3 is calibrated to give approximately the 
sample size indicated above. With E0 ¼ 10 (given on arbitrary scale), 
the corresponding standard deviation is σ3 ¼ 40.

Type I error rate used for Phase 2 
sample size calculation

α2* 0.1 Assuming 10% level for a two-sided test in Phase 2

Type I error rate used for Phase 3 
sample size calculation

α3* 0.05 Assuming 5% level for a two-sided test in Phase 3

Type II error rate used for Phase 2 
sample size calculation

β2 0.2 Assuming 80% power is intended for Phase 2

Type II error rate used for Phase 3 
sample size calculation

β3 0.1 Assuming 90% power is intended for Phase 3
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Table 3. Treatment effect parameters of the base case model used in the simulation study.

Parameter Notation Value Comment/source

Log-normal treatment effect 
distribution – location parameter

μ2, μ3 1.6 We assume that the true treatment effect distribution is the same for 
both Phase 2 and Phase 3. The parameters of the treatment effect 
distribution are chosen to get a probability of launch in the base 
case (approx. 25%) to be in line with the benchmark data given by 
Wong et al. (2019).

Log-normal treatment effect 
distribution – scale parameter

γ2, γ3 1.0

Two-point treatment effect 
distribution – size of positive 
efficacy

E0 10 This is the same parameter as used in sample size calculations

Two-point treatment effect 
distribution – probability of positive 
efficacy

pj 0.5

Table 4. Decision criteria parameters of the base case model used in the simulation study.

Parameter Notation Value Comment/source

Significance level for successful 
transition from Phase 2

αcrit
2 1%-40% This is the parameter representing the decision criterion after 

Phase 2. Outcomes with different values for this parameter 
are presented in the Results section

Significance level for successful 
transition from Phase 3

αcrit
3 5% Parameter representing the decision criterion after Phase 3.

Effect size for successful transition 
from Phase 2

Δcrit
2

0.05–0.40 This is the parameter representing the effect-size based 
decision criterion after Phase 2. Outcomes with different 
values for this parameter are presented in the Results section

Risk of failure due to non-efficacy 
reasons (e.g. severe safety finding), 
Phase 2

π2 10%

Risk of failure due to non-efficacy 
reasons (e.g. severe safety finding), 
Phase 3

π3 10% This approximate number is obtained by combining results 
from Wong et al. (2019) and Hwang et al. (2016).

Risk of failure in registration phase πreg 15% Estimate taken from Thomas et al. (2016) and Hay et al. (2014)

Table 5. Market parameters of the base case model used in the simulation study.

Parameter Notation Value Comment/source

Remaining patent time at start of Phase 2 TP 17
Peak annual sales revenue A0 700

Discount rate of future cash flows λ 0.1
Anticipated treatment effect (e.g. in Target Product 

Profile)
E0 10 This is the same parameter as used in sample size 

calculations

JOURNAL OF BIOPHARMACEUTICAL STATISTICS 21


	Abstract
	1. Introduction
	2. A model of the drug development process
	2.1. General modelling concept
	2.2. Cost and duration
	2.3. Treatment effect
	2.4. Sample size
	2.5. Decision criteria
	2.6. Sales revenue and discounting
	2.7. Outcome measures

	3. Simulation study and model parameters
	3.1. Simulation study
	3.2. Sample size (type II error) in Phase 2
	3.3. Sales revenue
	3.4. Difference in effect size and/or variability in phase 2

	4. Results
	4.1. Base case scenario

	5. Discussion
	Disclosure statement
	References
	Appendix

