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Abstract

The development of a new drug is an extremely high-risk enterprise. The attrition rates of

development projects and the average costs for each launched product are daunting, and

the completion of a development program requires a very long time horizon. These facts

imply that there are huge potential gains, should one be able to improve efficiency and

enhance decision-making capabilities. In this paper, we argue that substantial gains can be

achieved by adapting a holistic view of drug development. Historically, too much planning,

design and decision-making in the pharmaceutical development has been based on locally

optimising separate parts of the development program, and too often important sources of

uncertainty are ignored. We propose instead a model-based approach built on two essential

pillars; (1) an integrated holistic view of the development program, including post-launch

marketing and sales, with all parts evaluated simultaneously; (2) an explicit appreciation of

all relevant sources of uncertainty. Computer simulations are utilised to evaluate the proper-

ties of the program options at hand, and to provide valuable quantitative decision support.

Applications of this modelling approach have proven to add large value to development proj-

ects in terms of better program options being generated and more value-adding decisions

taken.

Introduction

The decreasing level of productivity and the increased spending in research and development

(R&D) has for a long time been an issue of concern in the pharmaceutical industry [1,2]. The

output in terms of new drugs approved has not increased correspondingly. Although the past

couple of years have shown an increase in the number of approvals [3], the viability of the cur-

rent business model has been questioned and the return on investment in pharmaceutical

R&D is noted to be on rapid decline [4,5]. The attrition rates of development projects and the

average costs for each launched product are indeed discouraging [6]. Studies have estimated

the cost of development at $1.4 billion (excluding capital costs) and $2.6 billion (including cap-

ital costs) [2, 7].

Given the huge costs involved and the deterring attrition rates, even a relatively minor pro-

ductivity improvement would lead to vast savings and revenue gains [8]. It has been claimed

that pharmaceutical industry R&D offers more room for productivity gains than any other
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research project [9]. This article is an attempt to contribute to such a productivity improve-

ment, proposing a framework for modelling and simulation with a potential to enhance the

decision-making process. We emphasise the role of uncertainty, and acknowledge the com-

plexities intrinsic to pharmaceutical industry decision-making, which is always based on

highly uncertain information [10]. Fleming [9] even claims that “ignoring the stochastic nature

of drug development has led to costly mistakes and, ultimately, the industry’s decline”.

Comprehensive accounts of quantitative aspects of decision-making in pharmaceutical

R&D are given by Chuang-Stein and Kirby [11] and Antonijevic [12]. Other authors have sug-

gested procedures to optimise specific aspects of drug development programs, applying deci-

sion theoretic approaches [13, 14]. In those approaches, pre-specified utility functions are

typically optimised over a limited set of parameters. We take a slightly different approach with

our methodology. The methodology described here is not and attempt at finding the absolute

optimum of a utility function based on restricted set of parameters. Instead, we propose to

build a model flexible enough to work with a variety of situations and allow the calculation of

any metric of interest based on simulation results. By repeatedly conducting simulations and

evaluate the options at hand, development teams are encouraged to engage in a continuous

cycle of creativity and analysis, leading to new and better investment options. The emphasis on

team engagement and creation of viable alternatives is in line with the decision analysis process

proposed by Nixon and Ireland [15].

Our modelling approach is based on two pillars which we think are essential for improved

insight and decision-making:

• Embrace all relevant uncertainty

• Adapt an integrated holistic view of the development program and product lifecycle

We will in the next chapter elaborate further on the importance of these two pillars. The

remainder of the article will introduce a framework for modelling and simulation developed to

enable the enhanced decision support. A key component of this framework is a concept

referred to as the ‘clinical effect model’ which will be described in some detail. The application

of the methodology is then illustrated using a real-world example.

Two pillars of a realistic modelling approach

Embrace relevant uncertainty

Virtually all aspects affecting the success and progress of a drug development project are sub-

ject to uncertainty. For example, there is uncertainty in the time it would take to perform clini-

cal trials, related to varying recruitment rates. There is also uncertainty in the costs involved,

uncertainty in the effect of placebo, uncertainty in the existence of side effects, uncertainty in

competition to market, uncertainty in the eventual sales, etc.

However, our experience is that too much of planning and decision-making have tradition-

ally been based on fixed estimates. These estimates, or guesses, tend most often to be far too

optimistic. The time it will take to finalise a trial and the costs incurred are typically underesti-

mated. Among the many sources of uncertainty, there is one that is arguably more important,

but typically neglected: The actual treatment effect of the compound under development.

Many projects are planned and conducted based on a target product profile, TPP, in which an

anticipated treatment effect is specified. Our experience is that the treatment effect observed

will often be a disappointment compared to the numbers specified in the TPP, hence the risk

of failure is often underestimated. It is a well-known fact that the vast majority of projects

entering clinical development will ultimately fail. The highest rate of attrition is observed in
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Phase 2, and the most common cause of failure is inferior efficacy [16]. As corroborated by the

degree of efficacy-based attrition, the treatment effects anticipated in TPPs may often be over-

estimated and the corresponding uncertainty is not adequately accounted for in design and

decision-making.

We claim that adequate planning and decision-making need to account for the actual

uncertainty in all relevant aspects of the development program, including the treatment effect.

In doing so, we get a more realistic basis for the decisions taken and will be able to choose the

program option bringing most value under realistic expectations.

Adapt an integrated holistic approach

Traditionally, many components in a development program are designed to optimise proper-

ties locally. The determination of sample size in clinical trials is a typical example. The sample

size is often calculated, based on an anticipated treatment effect, to obtain a desired power to

achieve statistical significance. This sample size might be the “correct” one within the confines

of the actual trial, in the sense that the desired power and significance is achieved for this par-

ticular trial (given that the assumptions are correct), However, an entirely different sample size

might be optimal in order to maximise the value of the entire development program.

More generally, any decisions and design choices made in a development program will

impact the remainder of the life-cycle of the product. The design and outcome from an early

phase trial will impact the likelihood of successful outcomes in later phase trials. Importantly it

will also impact the market success of the drug, should it eventually be launched. A couple of

examples:

• A program designed to be fast in order to reach market early may lead to increased value

through more years on the market with patent exclusivity. On the other hand, a program

designed to prioritize speed may often stand a higher risk of failure and may be less efficient

in bringing the right drug candidates to launch.

• Planning for conservative stop-go criteria in early development will lead to a lower total like-

lihood of approval as more drug candidate projects are terminated. However, the strict crite-

ria may also save cost, as futile projects are terminated early. Such criteria may also imply

that when a drug is eventually entering the market, there is stronger evidence that this is a

highly efficacious drug.

In the examples above, there are several aspects interacting dynamically, with both positive

and negative drivers of project value. These aspects relate to both the development program,

the registration process and the eventual outcome on the market. In order to evaluate such

dynamic effects of design choices, a model that captures the entire life cycle of the drug is

needed.

A framework for modelling, simulation and evaluation

Process model—Flow chart representation

As a starting point for the modeling of a development project, we have found it useful to

describe the program as a process model in a flow chart representation. We typically build

these process models based on the BPMN (Business Process Model and Notation), and a sim-

ple generic example is given in Fig 1. The use of BPMN has, from our experience, proven to be

a convenient way to describe and qualitatively model development programs. It is also flexible

enough to cater for a vast array of situations. More details regarding BPMN can be found on

the website www.bpmn.org.
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Development programs include many different types of activities, i.e. toxicology studies,

drug product development, manufacturing of API, etc. We recommend to include in the

modelling only those activities that are considered important to inform the decisions to be

supported. Based on the costs incurred, and in general the impact on decision-making, the

clinical trials are often of the highest importance for inclusion in the model. Hence, we will in

the remainder of this presentation focus mainly on the clinical trials, but the process model

could be extended to other activities when considered of importance to the situation at hand.

The clinical effect model

The previous chapter emphasized the need to embrace relevant uncertainty in the planning

and design of development programs, and the uncertainty in terms of the unknown treatment

effect was explicitly mentioned as one of the most crucial components. We describe in this sec-

tion an approach taken to capture this in what we will refer to as the ‘Clinical Effect Model’,

CEM.

In the CEM we assume that it is possible to identify a few endpoints that are crucial to the

success of the compound, and as such central to the development program. We will introduce

the concept by assuming that the evaluation is based on a single endpoint related to the efficacy

of the compound. The general concept is however valid also for more general situations, e.g.

the case of more than one pivotal efficacy endpoint, or endpoints related to safety. The use of

the CEM in investment decisions, and its generalisation beyond the simple case of a single effi-

cacy endpoint, are further described in a subsequent section and in the Discussion.

A fundamental part of the CEM is an assumption that each drug candidate has an inherent

treatment effect that would be realised should the compound be given as a drug to the actual

patient population. We will refer to this inherent property as the “true clinical effect”, EC. For

many real-world projects, that are terminated prior to launch to the market, EC is not realised

as the drug will not reach the intended patient population. However, in a simulation study we

can assign values to EC for all projects, hence evaluating the development program based on

this property. Throughout the development program, a number of trials are conducted, in

which we estimate the efficacy, Êj. This observed value can be viewed as representing the

underlying treatment efficacy, plus a random error due to the finite number of patients

included in the trial

Êj ¼ Ej þ εj: ð1Þ

A distinction is made in our model between the efficacy of the trial, Ej, and the true clinical

effect, EC. This difference could stem from many reasons. In earlier phases, surrogate

Fig 1. A generic example of a flow chart representation of a drug development project.

https://doi.org/10.1371/journal.pone.0220812.g001
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endpoints are sometimes used to predict the eventual clinical outcome, in which case the two

efficacy measures obviously differ. Also in later phases, where the study endpoint may be the

same as the pivotal endpoint, features of the clinical trial may cause the efficacy of the trial to

differ from the true clinical efficacy. This can be due to specific inclusion/exclusion criteria,

specialized study sites differing from general hospital clinics, etc. To account for the uncer-

tainty in the treatment effect, EC and Ej are treated as stochastic variables to which we assign

distribution assumptions when the model is evaluated. The assumptions regarding these distri-

butions will be based on the accumulated knowledge available at the time of modelling. In late

phase development there might be earlier clinical trials providing estimates, and in early phase

development, translational science data may be used. Benchmark data on treatment effects

and success probabilities in the targeted indication might also be used.

An important property of a study is its ability to provide accurate prediction of the true

effect (i.e. Ej should be an accurate predictor of EC). A clinical trial using a biomarker in a

selected subpopulation of patients may be assumed to have less predictive accuracy than a trial

using the clinical endpoint in a general patient population. Hence, the performance of various

drug development strategies may depend strongly on the predictive accuracy of the different

trials.

The predictive accuracy is in the CEM represented by the correlation between the ‘true clin-

ical effect’ and the ‘true efficacy in the trial’, ρj = corr(Ej, EC). This correlation is a key feature in

the CEM. It is reasonable to believe that the endpoint measured in an animal model in pre-

clinical development is only moderately correlated to the true clinical efficacy, corresponding

to a low value of ρj. On the other hand, the endpoint measured in a Phase 3 clinical trial should

be assumed to have a fair correlation to the true clinical efficacy, i.e. a high value of ρj. Taking

the predictive ability into account when evaluating various design options, i.e. by assigning a

relevant value of the correlation, is essential to obtain an adequate assessment of the relative

merits of the options under evaluation.

Attributes for activities

As described in Sec 3.1, it is recommended to include in the model all activities throughout the

entire development program that are of importance to inform the decision at hand. Attributes

are assigned to each activity. In our model the main attributes are:

• Cost, Cj

• Time, Tj

The most important activities in a drug development program are often the clinical trials,

for which the sample size of the trial is also a central attribute. This allows to capture the typical

situation that the cost and time of a trial would be a function of the number of patients

included. We define Nj as the number of patients per treatment arm and will introduce the

methodology assuming that there is equal allocation to the treatment arms.

For this example we chose a simple model where the cost is proportional to the sample size

plus a fixed cost for the trial. If the cost per patient is CNj and the number of treatment arms is

Aj, the cost of the trial is

Cj ¼ C
0

j þ AjNjC
N
j ð2Þ

The time of a trial would also be a function of the sample size. We choose a model where

the time is proportional to the sample size plus an additive component. If the recruitment rate
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is Rj patients per year, the time of the trial is given by

Tj ¼ T
0

j þ AjNj=Rj ð3Þ

The examples given above are relatively simple models to capture a couple of the most

essential properties of a trial. An increase in sample size comes at a cost, both in financial

terms and in calendar time. The model could of course be made more elaborate, whenever the

decision to be supported warrants increased detail. One example is to include the number of

centres in the trial. The cost is then defined as an increasing function of the number of centres,

and the time defined as a decreasing function.

Investment decisions and the clinical effect model

In a development program, there are typically a number of decision points, where choices are

made on how to proceed with the project, e.g. whether to stop the development of the com-

pound or to invest in the next phase of development. These decisions points (e.g. stop/go or

Go/No-go decisions) are important elements of our models. One simple way of modelling the

attrition occurring at the decision points is to assign a fixed probability of a successful progres-

sion to the next phase. However, a more realistic approach would be to model the investment

decision as dependent on the observed efficacy of the key trials in the previous development

phase. Consequently, in our model the investment decisions are linked to the CEM.

The criteria for progressing to the next phase are often based on the statistical significance

of the results observed. Using this approach, a positive investment decision is made if the p-

value from a previous trial is lower than a given threshold, p̂j < pcritj . Alternatively, the criterion

could be defined as a test statistic, z, exceeding a given threshold, ẑ j > zcritj . As an example of a

simple model, we may assume that the investment decision is related to the comparison of the

treatment effect of two treatment arms, and that the test statistic underlying the decision can

be approximated by the comparison of two treatment means (cf the standard two-group t-

test). With Êj ¼ �Xactive �
�Xplacebo, we will in this case have

ẑ j ¼ Êj=SEðÊjÞ ¼
Êj

s
ffiffiffiffiffiffiffiffiffi
2=N

p ð4Þ

where s is the standard deviation on the endpoint in question, and SE is the corresponding

standard error of the difference in means. We have in this section illustrated the case of deci-

sion criteria based on statistical significance of efficacy. In the Discussion we will give some

examples on how other, more complex, decision criteria can be modelled within the

framework.

The development program as a selection process

Stop/go criteria as outlined above will contribute to attrition and gradually weed out com-

pounds showing futile efficacy. Compounds with a desirable efficacy stand a better chance of

being progressed to later development phases. Consequently, it should be the case that com-

pounds at the end of a development program will (on average) have a better efficacy than

those entering the first phase of development. However, due to the random component of

measurement errors, and since the efficacy measured in trials is not identical to the true clini-

cal effect, the selection will not be perfect. This is illustrated in Fig 2, where simulation results

from a Clinical Effect Model are shown. The black curve represents the distribution of the true

treatment effect for compounds entering clinical development. As compounds are selected

through the early development stop/go criteria of investment decisions, a proportion of the
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left-hand part of the distribution is removed. The result is a shift of the remaining distribution

(dotted line) partly to the right. In late development there is further attrition and the dashed

line shows the distribution of compounds actually launched. The graph illustrates the fact that

compounds with superior efficacy have a relatively larger chance of being retained throughout

the program. However, from the graph it is also obvious that a substantial part of compounds

with a relatively high efficacy will be subject to attrition (‘false negatives’). There are also cases

in which compounds with inferior efficacy are retained throughout the entire program (‘false

positives’).

The clinical effect model and the probability of success

In a traditional approach, the probability of success, PoS, is given as a fixed probability, e.g.

based on a benchmark assumption or taken as the power for which a study is designed. In

our approach, the PoS is typically not an assumption but an outcome from simulations of the

model. Several parameters of the model will interact dynamically, resulting in an observed

PoS. Some of these parameters are:

• Level of statistical significance to declare success

• Required observed efficacy to declare success

• Assumptions on the true efficacy of the compound

• Sample size of the study

Fig 2. An example of a distribution of the true effect for subsets of simulated compounds progressing through development. (The

horizontal axis is an arbitrary scale of treatment effect. The density functions have been scaled proportional to the proportion of compounds

remaining after each phase).

https://doi.org/10.1371/journal.pone.0220812.g002

Framework for improved decision-making in drug development

PLOS ONE | https://doi.org/10.1371/journal.pone.0220812 August 28, 2019 7 / 22

https://doi.org/10.1371/journal.pone.0220812.g002
https://doi.org/10.1371/journal.pone.0220812


• Standard deviation on the endpoint of interest

In addition, the PoS of later phase trials will be dependent on parameters pertaining to pre-

ceding studies and investment decisions in the development program. This is due to the fact

that the preceding investment decisions will constitute a selection process, resulting in a

change in the distribution going into the next phase of development (see Fig 2). Hence, the dis-

tribution driving the outcome of a later phase trial will be different from the distribution that

we might assume at the point of modelling.

Sales revenue and the clinical effect

An important part of the CEM is appreciating the fact that a drug shown to have a very good

treatment effect is likely to generate more revenue than a drug with a mediocre effect. A rele-

vant model of a drug development program should therefore include a dependency between

treatment effect and sales. We will here introduce a simple way to model such a dependency.

In a basic commercial forecast, the sales revenue can be assumed to follow a trapezoidal

curve over time. Following registration and launch there will be a period of ramp-up sales, fol-

lowed by a plateau where a peak sales (PYS) is reached. As the drug reaches the time for loss of

exclusivity on the market (LoE), sales will drop to a much smaller volume (residual sales). For-

mally, we can write a model for the sales at time t as:

Salest ¼

ðt � TLÞ
U

� PYS if TL < t � TL þ U

PYS if TL þ U < t � TE
f � PYS if TE < t

8
>>><

>>>:

ð5Þ

where TL is the time of launch, U is the length of the sales ramp up period, TE is the time of

LoE and f is the proportion of sales remaining after LoE.

It is reasonable to assume that the observed treatment effect in Phase 3 trials, Ê3, will (at

least initially) affect the sales. Assume that Salest is the anticipated revenue under the assump-

tion that the treatment effect is the one specified in the TPP, denoted E0. A simple model to

accommodate for effect dependent sales might then be

SalesEt ¼ Salest �
Ê3

E0

ð6Þ

The sales, at time t, is here modelled to be proportional to the observed Phase 3 results, Ê3

calibrated with the TPP-based treatment effect, E0, and the corresponding sales forecast, Salest.
The impact of the treatment effect on sales can of course also be modelled in several other

ways. Should one assume that many other sources of knowledge are available, and that the

market would soon know the true clinical effect of the drug, one might replace Ê3 in Eq 6 by

the true clinical effect, EC. A further alternative might be to decompose sales into volume and

price components. The treatment effect can then be modelled to affect either of the volume or

the price (or both).

Simulations and performance indicators

Once the model has been defined as described in previous sections of this chapter, we use com-

puter simulations to evaluate properties of the development program. A prominent feature of

the proposed modelling approach is that all relevant sources of uncertainty should be explicitly

embraced. Consequently, when conducting simulations, model parameters are typically not
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given a fixed value, but for many parameters we assume a stochastic distribution to reflect

uncertainty.

As an example, the true effect of a drug candidate, EC and Ej, might be drawn from a log-

normal distribution. Other attributes that would typically be represented with uncertainty,

hence drawn from a stochastic distribution when performing simulations, are the time and the

cost of the trial, and the parameters driving time/cost as defined earlier. The simulation will

then in each iteration draw random numbers from the assigned distributions.

From the simulations, any number of performance indicators can be calculated. The follow-

ing list includes just a few examples which from our experience have been frequently useful:

• Probability of Launch

• Expected Net Present Value, eNPV

• Expected gain, for the subset of iterations proceeding to successful launch

• Expected loss, for the subset of iterations terminated prior to successful launch

Based on these measures, and any other indicators that may be considered useful, develop-

ment options can be evaluated and compared. It will also typically prove very useful to present

visual graphics, gaining further insight and supporting decisions to be made. Some examples

will be given in the empirical application illustrated in a subsequent chapter.

Financial metrics and cash flow models

Several parts of our model represent financial events, with typical examples being the cost

incurred by clinical trials and the sales revenue gained once the product is launched into the

market. As a result, various financial metrics could be calculated from the model and used to

describe and evaluate properties of a development program. The return on investment, ROI

[17], and the net present value, NPV [18], are typical examples. In the literature on decision-

making in the pharmaceutical industry, the NPV seems to be the primary metric of choice

[13, 18–21]. I will follow this example and use NPV for illustration, while noting that other

metrics may also be informative and could easily be calculated based on the proposed

framework.

The calculation of NPV is based on obtaining the net cash flow during the evaluation

period. We have chosen to implement a discrete model, where the cash flows are attributed to

a finite number of time buckets. Let the time period of interest be t 2 [0, T], and let the length

of each time bucket be τ, implying a total of I = T/τ time buckets. Assuming that the costs, Cj,
from a clinical trial (or more generally any activity in the model) are approximated to occur at

a constant rate over the duration of the trial, Tj, we have that the cash flow incurred by the trial

at time bucket i is Fij ¼
� Cj
Tj=t

. Similarly, the sales revenue for the market phase is transformed

into a cash flow for each time bucket after launch by discretising the sales model (cf Eqs 5 and

6). For the general case that more than one activity may be run in parallel, the resulting cash

flow at a time bucket is Fi = Sj Fij. A schematic illustration of the cash flow profile from a devel-

opment program is provided in Fig 3.

With the cash flow, Fi, defined for the entire time period of interest, the NPV is calculated

by discounting the cash flows as

NPVk ¼
XI

i¼1
Fið1þ rÞ

� ti ð7Þ
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The index k is used here to represent a specific iteration of the simulation. The aggregated

metric of interest will then be the expected NPV, as given by the average

eNPV ¼
1

K

XK

k¼1
NPVk ð8Þ

Algorithm for implementing the proposed framework

The proposed framework for modelling and decision-support is a general methodology

intended to be applied to a wide variety of situations and development programs. While the

details will be different for each situation, this section summarizes in a general stepwise algo-

rithm the implementation of the methodology. For some steps in the algorithm, references are

given to earlier sections of this chapter where details are given.

1. Choose meta-parameters for the model and analysis:

a. Set the number of simulation runs, K

b. Set the length of the calculation horizon, T, and the length of time buckets for cash flow

calculations, τ (cf “Financial metrics . . .”section)

c. Set the discount rate, r (cf “Financial metrics . . .”section)

2. Choose what activities and decision points to include in the model:

a. It is recommended to illustrate the modelled development program as a process model,

e.g. using BPMN (cf “Process model . . .”section)

3. Define attributes for activities (e.g. clinical trials):

a. Choose how to model the cost of an activity, e.g. as a fixed value or as a function of sam-

ple size and/or number of study sites (cf “Attributes . . .”section, Eq 2)

Fig 3. Schematic illustration of the cash flow profile from a development program.

https://doi.org/10.1371/journal.pone.0220812.g003
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b. Choose how to model the duration of an activity, e.g. as a fixed value or as a function of

sample size and/or number of study sites (cf “Attributes . . .”section, Eq 3)

c. Repeat (a) and (b) for each activity in the model

4. Define success criteria for decision points:

a. Choose the success criteria for a decision point (cf “Investment decisions . . .”section)

b. Repeat (a) for each decision point in the model

5. Generate simulated data for input parameters (cf “Simulations . . .”section):

a. Draw values from a stochastic distribution (for all input parameters where uncertainty is

modelled)

b. Set to fixed values (for input parameters without assigned uncertainty)

6. Evaluate a simulation iteration:

a. Calculate attributes, i.e. cost and duration, for each activity (as defined in step 3)

b. Evaluate outcomes of the decision criteria for each decision point (as defined in step 4)

c. Register the path through the development process, resulting from the decision point

outcomes

d. Register what activities are performed in this path of development

e. Register the cost and duration for these activities

f. Calculate the time at which the activities occur. Note that this time may be subject to ran-

dom variation, as the duration of previous activities may be modelled with uncertainty

g. Calculate the sales revenue time series, given that the development path obtained in (c)
did not lead to a project termination prior to launch (cf “Sales revenue . . .”section)

7. Calculate cash flows (cf “Financial metrics . . .”section):

a. Calculate a net cash flow for each time bucket, based on the cost and revenues obtained

in Step 6

b. Perform a discounting of the cash flows using the chosen discount rate, and calculate

metrics of interest, e.g. NPV (Eq 7)

8. Repeat steps 5–7 for each of the K simulation iterations

9. Perform analysis of the obtained results:

a. Calculate aggregate performance metrics of interest (cf “Simulations . . .”section and Eq 8)

b. Produce output visualizations of output results

An illustrated example

The project and the program design

In this chapter we will illustrate the application of the proposed modelling approach by means

of a worked example. The example is based on a real-world oncology project, but anonymized

and slightly modified. The development program is illustrated in a process model in Fig 4.
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The Phase 1 trial is planned to be continued in a so-called expansion trial, where additional

cohorts of patients are included, and in which efficacy is evaluated. There are potentially two

expansion cohorts. After the first expansion cohort there is a possibility to go directly to an

accelerated development path, provided that the results are exceptionally promising. Less

exceptional results would lead to a second expansion cohort. After the second cohort there is

an investment decision, at which the project is either terminated, continued to the accelerated

development path, or continued to a standard development path. The accelerated path is based

on overall response rate as the endpoint. This is expected to be sufficient for registration for

this indication if results are sufficiently promising. The standard development path includes a

randomized controlled trial, with progression free survival as the primary endpoint. A confir-

matory trial is also expected after an approval from the accelerated path.

Model attributes, simulation and summary of results

For the activities and decision points outlined in the process model, we have assigned assump-

tions to parameters as defined in the model description of the previous chapter. Details on the

assigned parameter values are provided as supplementary material. The modelling and simula-

tions for this example were performed using a purpose-built tool, Captario SUM, developed

specifically to facilitate application of the proposed methodology in drug development projects

and portfolios.

A Monte-Carlo simulation was then run with 10000 iterations. This would correspond to

10000 potential outcomes of the development program, reflecting the uncertainty and dynam-

ics of the large number of parameters of the model. Each iteration would represent a draw

from the assumed distribution for the true effect, illustrated by the solid line in Fig 5. The dot-

ted line represents the distribution of compounds successfully progressed after the expansion

trial. The dashed line distribution shows that compounds reaching launch after being pro-

gressed through the accelerated path will generally have a very high true effect on the ORR

scale. On the other hand, the dashed-dotted distribution indicates that compounds launched

after the standard development path, will in this case typically have a moderate treatment

effect. These results illustrate the outcome for the current example of the selection process that

is obtained through the Stop/Go decisions of drug development programs.

We mentioned in an earlier section a few examples of summary metrics that is often of

interest. For the illustrated example these measures were estimated at:

Fig 4. Process model of the development program used for illustration.

https://doi.org/10.1371/journal.pone.0220812.g004
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• Probability of Launch 31%

• Expected Net Present Value, eNPV 45 MUSD

• Expected gain 236 MUSD

• Expected loss 40 MUSD

Decision support based on the model

In this section we will illustrate how the model can be used to support some strategic decisions

relevant to this project.

• Choice of decision criterion for a stop/go decision after the expansion trial

• Choice of sample size for the randomized controlled trial

• Assessment of capital requirements over time

Choice of decision criterion

Referring to the process diagram of Fig 4, we can see that there is a decision point after the

expansion trial, at which there is a choice to be made whether to stop the program, to continue

Fig 5. The distribution of the true effect on overall response rate. Distributions are given for all iterations, as well as for subsets of iterations

progressing through the different paths of development. (The density functions have been scaled proportional to the proportion of iterations in

each case).

https://doi.org/10.1371/journal.pone.0220812.g005
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with an accelerated development path or to continue with a standard development trial. The

decision on which path to take will have a substantial impact on the project, and the choice of

decision criteria is consequently important. The primary endpoint of the expansion trial is the

overall response rate (ORR). The stop/go criterion is based on the number of responders

required, among the 40 patients (20 patients in each of the two expansion cohorts), to proceed

the project.

A criterion initially considered by the project team was to require an ORR of at least 20%,

i.e. at least eight responders. To support this choice, a simulation was run where the decision

criterion, Ecritj , varied over a range of values. Fig 6 shows the expected NPV for a range of values

on the decision threshold, and it illustrates that the initially suggested decision criterion,

Ecritj ¼ 8, is probably too conservative. A substantially higher project value would be obtained

with a more liberal criterion, e.g. Ecritj ¼ 5, and results indicate that this choice of decision cri-

terion would increase the project value with approximately 13%.

Choice of sample size

The choice of appropriate sample size for clinical trials is an issue pertinent to any drug devel-

opment program. In this example, we illustrate the proposed modelling approach on the

Fig 6. The mean net present value for a range of stop/go criteria applied after the expansion trial.

https://doi.org/10.1371/journal.pone.0220812.g006
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assessment of sample size for the randomized controlled trial in the standard development

path.

The provisional sample size suggested by the project was N = 300 patients per treatment

arm. When running simulations on the model, we let the sample size vary on the range

between N = 100 and N = 400, and for each iteration, the NPV was calculated. These data

allow to fit a function to the relation between NPV and N (Fig 7). The results indicate in this

case that the value of the project is larger for a somewhat smaller sample size than proposed by

the project team, with an optimum at N = 220.

Assessment of capital requirement

The previous two paragraphs illustrated the use of our methodology to support decisions on

program design choices. Another use of the model is to assess operational aspects of the devel-

opment program. As described earlier, each activity (trial) is in the model given a number of

attributes, e.g. time and cost. Typically, these attributes are given with relevant uncertainty.

Several operational properties of the development program can then be derived as an out-

come of the simulations. In Figs 8 and 9 we illustrate the development cost incurred by the

development program, showing how the costs develop over time. Fig 8 shows the cost for the

subset of iteration where the project leads to a launch, whereas Fig 9 shows the cost for all itera-

tions of the simulation. The box plots are useful in assessing the budgetary requirements for

Fig 7. The expected net present value as a function of the sample size of the randomized standard development trial.

https://doi.org/10.1371/journal.pone.0220812.g007
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the project, both in terms of the monetary value and in terms of their timing. The box plots

also illustrate clearly the large degree of uncertainty in the costs drawn by the project.

Discussion

The illustrating example

The methodology proposed in this paper is designed to be flexible enough to allow the support

of a vast variety of decisions and design choices throughout a development program. The case

study in the previous chapter illustrates just a few examples of the type of decisions and assess-

ments that could be supported:

• Choice of stop/go criteria at decision points

• Clinical trial design issues

• Assessing capital requirements and other financial aspects of a development program

Fig 8. The cost incurred throughout the development program, illustrated by box plots over time, for the subset of simulation iterations

leading to a launch.

https://doi.org/10.1371/journal.pone.0220812.g008
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The results regarding the choice of decision criteria are the outcome of a rather complex

interplay between several factors. A high decision threshold would lead to a reduced risk of

progressing a futile drug candidate (i.e. fewer false positives) and it would thereby reduce

development costs in later phases. A high threshold would also imply a strict selection so that,

referring to Fig 5, the distribution of the true effect of the progressed drug candidates would be

shifted towards higher treatment effect. On the other hand, a high threshold would lead to a

termination of the project in many cases where the true effect was actually acceptable (i.e. a

large number of false negatives), and these would correspond to missed opportunities of reve-

nue from launched product. In addition, the balance of the mentioned aspects will also depend

on the program design and decision criteria of the later phases. Our modelling approach and

the corresponding simulations will, in these complex situations, reveal dynamics and lead to

insights that would not have been possible to reach with traditional calculations. It may be

noted that the results obtained in this case study are in line with findings in Miller & Burman

Fig 9. The cost incurred throughout the development program, illustrated by box plots over time.

https://doi.org/10.1371/journal.pone.0220812.g009
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[14], where they show some theoretical background to why more liberal decision criteria are

in some situations beneficial in early phase decision-making.

The issue of determining an appropriate sample size is present in any drug development

project, and in almost any clinical trial. The sample size has traditionally implied a calculation

exercise for the statistician. Our modelling approach enables a different view on how to inform

the choice of sample size. Firstly, the true treatment effect of the drug candidate is never

known, and it may be argued that an appropriate sample size calculation should take this

uncertainty into account. The concept of assurance [22] is to some extent addressing this

issue, in that it involves a prior distribution to be set on the treatment effect. Secondly, the

obsession with the 5% significance level is unfortunate, and other levels would often be benefi-

cial. There are many situations where a higher (or lower) significance level would be appropri-

ate [14]. Thirdly, the statistical power as calculated on a single study is not necessarily a useful

metric on which to base strategic decisions. We argue that important decisions should be

made based on a metric capturing wider aspects of the development program. Such metrics

could be global economic measures, e.g. NPV or ROI, or components contributing to the proj-

ect value, like the probability of launch, the expected loss if project fails, the expected gain if

project succeeds, etc.

In our third example, we derive the development costs for the drug project. In contrast to

traditional forecasts, these results do represent the outcome when relevant uncertainties are

taken into account. In any development program, the exact amount and timing of costs to be

incurred would not be known in advance, and anyone with a background in the pharmaceuti-

cal industry will have seen both delays and cost increases in their development projects.

Appropriate budget planning should incorporate these uncertainties to ensure an acceptable

probability that the budgetary limits will hold. In particular for small biotech companies, an

appropriate forecast of future capital requirements is essential to plan when venture capital

injections are needed.

Generalizing the decision criteria

The Clinical Effect Model, CEM, and its relation to investment decisions was introduced in

Sec 3.2 and 3.4 using the statistical significance of an efficacy endpoint as the decision crite-

rion, i.e. a positive decision is concluded if ẑ j > zcritj . However, the situation is sometimes more

complex, including more than one parameter, and I will here discuss some examples on how

the methodology can be generalized to model other types of decision criteria.

• Statistical significance and clinical relevance, ẑ j > zcritj and Êj > Ecritj .

It is often stated that a positive outcome should require, in addition to statistical significance,

also a certain size of the treatment effect. As noted by Saint-Hilary et al [23], these two crite-

ria may often, for a given set of design parameters, be redundant. However, keeping both

rules in the criteria may permit changing other parts of the model and performing analysis

without changing the decision criteria.

• Statistical significance and absence of critical safety signal, ẑ j > zcritj and Ij = 0,

where Ij~Bernouilli(pj) may be an indicator for the occurrence of an idiosyncratic safety sig-

nal, which occurs independent of the efficacy endpoint.

• Clinical relevance and acceptable level of a safety parameter, Êj > Ecritj and Ŝj < Scritj
The clinical efficacy and safety parameters may, in this case, be assumed to be correlated.

The effect modelling approach can be applied also to the safety parameter, generating Ŝj as

described earlier for Êj (cf Eq 1), and ensuring appropriate correlation, rSj ¼ corrðSj; ECÞ,
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between the safety parameter and the clinical efficacy. As an example, we have applied this

type of criterion for models in stroke prevention, where the primary efficacy (prevention of

stroke events) is likely to be negatively correlated to a known safety issue (occurrence of

bleeding events).

• Statistical significance, clinical relevance and positive benefit-risk, ẑ j > zcritj ; Êj > Ecritj and

DÛ j > 0

Saint-Hilary et al [23] propose to use a composite measure as the basis for definition of suc-

cess, including the three above-mentioned components. The essence of the benefit risk com-

ponent is to allow for a comparison between the investigational treatment and control, by

combining information on both efficacy and safety parameters. A brief outline of how the

main ideas could be implemented in our framework is as follows. Assume that there are L
safety parameters of particular interest. For each parameter, the difference between treat-

ment groups is transformed to a value on the interval [−1,1], with 0 representing treatment

equality. We then have the estimates Ê�j and Ŝ�jl, l = 1,..,L which can be defined and simulated

in line with the general methods described earlier in “The clinical effect model” section. For

each of the parameters, a weight, wl, is assigned such that
PL

l¼0
wl ¼ 1, with w0 being the

weight of the efficacy parameter. The composite measure can then be calculated as

DÛ j ¼ w0Ê
�

j þ
XL

l¼1

wlŜ
�

jl

and can be used as one of the decision criteria.

While the above bullet points illustrate a few specific examples of decision criteria, it should

be clear that the proposed framework is flexible enough to cater for a wide variety of

situations.

Related work and general comments

We have in this article described the proposed framework mainly from the perspective of the

clinical trials leading up to registration and launch to market, while the importance of consid-

ering other activities in a development programs was mentionedbreifly. Other authors have

placed the focus on other areas than the clinical trials. Related work has for instance been done

by Marques et al [24–26], with a focus on manufacturing aspects in drug development. Mar-

ques et al develop methods to support decision-making related to process design and produc-

tion planning during drug development.

We described earlier the calculation of financial metrics based on a discrete cash flow

model, Other authors [20] have chosen a continuous cash flow representation for this type of

modelling. Fig 3, schematically illustrating the cash flow during a development program,

shows that the basic implementation of our model assumes that costs are distributed evenly

over the duration of clinical trials. If modelling of more detailed cost allocation is required,

cost allocation could be made more flexible, e.g. allocating additional costs at start and end of

the trial [20]. For the market phase, Patel et al [20] chose to approximate the sales revenue as

constant during the market phase, dropping to zero after patent expiry. We suggest in Eq 5 a

slightly more elaborate sales model. Our model is more in line with the one used by Patel et al

[19], with a sales ramp-up at the first years on market, and a residual sales following patent

expiry (loss of market exclusivity).

While financial metrics, such as the eNPV, have been extensively used in many situations, it

should be noted that other types of metrics could also be of value. In the early phases of
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development, the sales forecasts may be considered too uncertain and other non-financial

measures might be of more interest. The proposed framework allows for the calculation of a

wide range of summary metrics based on the simulated data. In particular, we note that the

modelling of a treatment effect through the Clinical Effect Model allows for the evaluation of

the ability of the development program to select the right compounds for progression to

launch (c.f. Sec 3.5, Fig 2). Based on the simulation outcomes one could for instance estimate

the probabilities of false negatives (projects terminated although having good efficacy) and

false positives (projects launched although having mediocre true efficacy).

Mathematical modelling is essential when quantitatively evaluating the properties of a drug

development program and providing supporting evidence for decisions to be made in various

situations. However, the way in which models are employed may differ between applications.

In some cases, when the focus is on addressing a specific question, it may prove useful to find

analytical solutions to a mathematical formulation of the problem [14, 20]. The analytical solu-

tion may also allow for a formal optimization of certain parameters within the confines of the

defined model. In other cases, authors have chosen to present results based on computer simu-

lations based on underlying models [11, 19, 21]. The simulation approach has its main advan-

tages in situations where analytical solutions are hard to find, and where flexibility to easily

adapt and evaluate new situations is required. In their book on quantitative decisions in the

pharmaceutical industry, ChuangStein and Kirby [11] generated most of the numerical results

with simulations, even in cases where analytical results might have been possible to obtain.

The modelling framework that we propose in this paper is explicitly developed to allow for

utmost flexibility and an applicability to a very wide range of situations and questions. The

framework also emphasizes the need to take a holistic view on the entire drug development

program, which render attempts for analytical solutions problematic. It has consequently been

an obvious choice to adapt the simulation approach when obtaining numerical results and

analyses in this framework.

In this article we focussed on decisions made within a drug development project. For all

medium and large size pharmaceutical companies, each drug project will constitute a part of a

larger portfolio of projects. Thus, the planning and decision-making at the portfolio level is

obviously of great importance [20, 27]. Although we have chosen here to focus on the project

level, many of the underlying concepts would be applicable also to the portfolio. The choices to

be made and the decisions to be supported may differ between the project and portfolio level,

but the main pillars of ‘embracing uncertainty’ and ‘adapting a holistic approach’ remain valid

in both cases.

Supporting information

S1 File. Model parameter values used in the illustrated example.
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